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1 General

This document gives notation, summarizes methodology and describes imple-
mentation of two-phase methods as presented in Schill and Drescher (1997)
and Scott and Wild (1997), as programmed in separate macros of the sas-
twophase-package. Model-based covariance matrices are provided. SAS/STAT-
and SAS/IML software (SAS Institute Inc.) must be available in the computing
environment.

2 Notation

We assume that in a population the probability of a binary outcome D in a
person with covariate X = x is given by the logistic model

Pr(D = 1|X = x) =
exp(α+ xTβ)

1 + exp(α+ xTβ)
, (2.1)

where x denotes a p × 1 vector including exposures, covariates and inter-
actions. Focus lies on inference about the log odds ratio parameter β =
(β1, . . . , βp)T .
The phase one sample comprises data on outcome D ∈ {0, 1} and measure-
ments of partial or proxy information Z about X, leading to a stratification
S with J > 1 strata. Let Nij denote the number of first-phase observations
with (D,S) = (i, j), i = 0, 1 and j = 1, . . . , J . The phase one sample can be
prospective or retrospective (case-control).
At the second phase of sampling, 0 < nij ≤ Nij individuals are randomly se-
lected from within each cell of the phase one data for covariate ascertainment.
For convenience, we assumeX to be discrete taking values xjk, k = 1, . . . ,Kj,
say, within stratum j. Let nijk denote the number of second phase observa-
tions falling into cell (i, j, k).

3 Methods

Regression methods based on weighted likelihood, pseudo likelihood and
maximum likelihood are presented. We first describe the likelihood functions
for prospective phase one samples, the extension to retrospective samples is
given in section 3.6. Different sets of parameters are estimated with the di-
verse methods. For a description of the (model-based) parameter covariance
matrices, refer to the underlying articles.

Assumptions With the exception of the weighted likelihood method, all other
estimation methods require that stratum variable S and outcome D are con-
ditionally independent, given X = x: Pr(D = 1|S = j, x) = Pr(D = 1|x),
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that is, outcome probabilities depend on S only through X. This assumption
is automatically fulfilled in a missing-value-context, because Z or parts of Z
are included in X and S is a function of Z. In a measurement-error-setting
this assumption may be violated.

3.1 Weighted likelihood

The idea of this approach (Flanders and Greenland, 1991; Reilly and Pepe,
1995) stems from survey research (Horvitz and Thompson, 1952) and is to
maximize the complete data likelihood, where the unknown cell counts are
replaced by the observed counts nijk, weighted by the inverse selection prob-
abilities Nij/nij within each (D,S)−cell. Thus θWL = (α, βT )T is estimated
by θ̂WL, which is obtained by maximizing

LWL =
∏
i

∏
j

∏
k

Pr(D = i | xjk)

(
Nij
nij

nijk

)
. (3.2)

3.2 Pseudo likelihood

The pseudo likelihood approach utilizes a marginal outcome model for the
phase one data and derives stratum-specific outcome probabilities for the
second phase data. Let γj denote stratum-specific log odds, defined as γj =
log(Pr(D = 1|S = j)/Pr(D = 0|S = j)), define p1(j) = Pr(D = 1|S =
j). Furthermore, let p1j(x) = Pr(D = 1|S = j, x, Sample 2) denote the
probability of sampling a ”case” from stratum j of the second phase sample
with n1j ”cases” and n0j ”controls” with covariate x. Let F (u) = 1/[1 +
exp(−u)] denote the standard logistic distribution function.
Then

p1(j) = 1− p0(j) = F (γj),

p1j(x) = 1− p0j(x) = F

(
log

n1j

n0j
− γj + α+ xTβ

)
,

j = 1, . . . , J.

θPL = (γT , α, βT )T is estimated by maximizing the pseudo likeliood LPL of
the two-phase setup (Schill et al., 1993):

LPL =
∏
i

∏
j

{
pi(j)Nij

∏
k

pij(xjk)nijk

}
. (3.3)

We note a minor change in the parametrization of the marginal model com-
pared to Schill and Drescher (1997).
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The method of Breslow and Cain (1988) estimates θBC = (γT , α, βT )T in two
steps. First, the pseudo likelihood contributions of the first phase data are
maximized, giving estimates

γ̂j = log
N1j

N0j
, j = 1, . . . , J.

In the second step these estimates are plugged into the pseudo likelihood
contributions of Sample 2, i. e., the remaining parameters of θBC are obtained
by maximizing

LBC =
∏
i

∏
j

∏
k

p̃ij(xjk)nijk, (3.4)

where p̃1j(x) = 1− p̃0j(x) = F
(
log n1jN0j

n0jN1j
+ α+ xTβ

)
.

3.3 Maximum likelihood via the EM algorithm

To compute ML estimates, Schill and Drescher justified the use of the EM
algorithm (Dempster et al., 1977) applied to a Poisson likelihood. In this
approach, the (possibly unobserved) counts, Nijk say, are Poisson distributed
with expectation

µijk =
{

exp(δjk + α+ xT
jkβ) if i = 1

exp(δjk) if i = 0
. (3.5)

In the E-step the unobserved cell counts Nijk are replaced by their expecta-
tions conditional on the observed data nijk and the current estimates of the
parameters, giving

N̂ijk = nijk + (Nij − nij) (µ̂ijk/µ̂ij+) .

The M-step then maximizes the Poisson likelihood, as if the N̂ijk were the
complete data. The parameter to be estimated is θML EM = (δT , α, βT )T , δT =
(δ11, . . . , δJKJ ). δ represents a discrete parametrization of the covaariate dis-
tribution in {D = 0} and can be of high dimension if the second phase data
are extensive with a wide variety of covariate patterns. The cost of using
this extensively parameterized model is ”purely computational” (Scott and
Wild, 1991), meaning that no efficiency loss in estimating α and β is incurred.
However, in case of a high-dimensional δ, the algorithm can be painfully slow
or even fail due to lack of memory, because high-dimensional matrices need
to be inverted (see Secton 4.2).
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3.4 Maximum likelihood via profile likelihood

From the profile likelihood, Scott and Wild (1997) derive an iterative cycle
based on a pseudo likelihood: The approach fits a logistic regression model
(the pseudo model) to the phase two data where the pseudo model includes
stratum-specific offsets that are updated at each cycle. The probabilities p?

ijk

of the pseudo model are

p?
1jk = 1− p?

0jk = F

(
log

κ1j

κ0j
+ α+ xT

jkβ

)
, (3.6)

j = 1, . . . , J, k = 1, . . . ,Kj.

The κij are computed as

κij =
nij − γij

Nij − γij
, (3.7)

γij = nij −
∑
k

n+jkp
?
ijk. (3.8)

Note that, if in stratum j say, phase one and phase two sample sizes agree,
i. e., n0j = N0j and n1j = N1j, the offset for this stratum is zero.

Estimation algorithm. The parameter to be estimated is θML SW = (α, βT )T .

P1 Start the algorithm with the Breslow-Cain approach, i. e., choose as
offsets log

(
n1jN0j

n0jN1j

)
, j = 1, . . . , J, and apply the pseudo model to the

phase two data.

P2 Update offsets via Equations (3.8) and (3.7).

P3 Estimate α and β using the pseudo model.

P4 Go to P2 until convergence.

Asymptotic variance covariance matrix The computation of the asymptotic
variance-covariance matrix is based on Equation (18) of Scott and Wild.
Since we are concerned with the binary logistic outcome model, their formu-
lae reduce to simpler expressions. The information matrix I is given as

I = I? +
∑

j: aj 6=0

BjB
T
j /kj, (3.9)
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where I? is the information matrix of the pseudo model. The other quantities
are computed as:

Bj =
∑

x∈ stratum j

∂P ?(x)

∂θ
=

Kj∑
k=1

n+jkxjkp
?
1jkp

?
0jk,

kj =

{
1/aj − wj, if aj 6= 0,
not defined otherwise,

aj =
1

n0j − γ0j
−

1

N0j − γ0j
+

1

n1j − γ1j
−

1

N1j − γ1j
,

wj =
∑

x∈ stratum j

(P ?(x)− P ?2(x)) =
Kj∑

k=1

n+jkp
?
1jkp

?
0jk.

Note that strata j with aj = 0 do not provide an increment in information.
This is due to the fact that for these strata phase one and phase two sample
sizes agree: n0j = N0j and n1j = N1j (see above).

3.5 Interrelations between methods

Depending on model specification, stratification and recruitment some rela-
tions between methods may be established.

• If the model includes the stratum variable S as a factor, the two pseudo
likelihood methods agree and give the ML estimates of (α, βT )T .

• If the sampling fractions nij/Nij are constant, the WL- and BC-estimates
of α and β agree.

• In the complete data case, Nij = nij and weighted likelihood and the
Breslow-Cain method yield ML estimates: (α̂WL, β̂

T
WL)T = (α̂BC, β̂

T
BC)T =

(α̂ML, β̂
T
ML)T .

3.6 Retrospective first phase sample

If the first phase sample is retrospective (case-control), the meaning of the
intercept parameter changes: In this case, all methods estimate as intercept
a parameter α0 = α+ log(Pr(D = 0)/Pr(D = 1)) instead of α. In this case,
an offset logN1+/N0+) has been added to the linear predictor.

4 Implementation

The preparatory program prep.sas reads the separate first and second phase
data and outputs a combined, restructured dataset prep, sorted by stratum
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and covariate pattern. This dataset serves as input to all estimation macros
(refer to the document TPDocu.pdf, Section 5, in this folder).

4.1 Weighted-, pseudo- and profile likelihood

The weighted likelihood and pseudo likelihood implementations are wlrma-
cro.sas, bc_macro.sas, zlrmacro.sas and sw_macro.sas. These programs use
SAS/STAT software proc logistic to obtain parameter estimates. To compute
the (model-based) covariance matrices proc iml is invoked: data and parame-
ter estimates are read into iml to obtain the appropriate design matrices and
linear predictors. The two-phase covariance matrices are calculated; finally,
an adjustment is made if the first phase sample is retrospective.

4.2 EM algorithm

Define θ = θML EM and let X denote the design matrix of the Poisson model
(3.5), so that µ = exp(Xθ). X has dimension 2nx × (1 + p + nx), where
nx =

∑
j Kj denotes the number of distinct covariate patterns.

Parameter starting values. The algorithm is started with α = log(N1/N0),
where Ni denote the numbers of the outcome groups in phase one, β is set
to 0 and the components of δ are set to log(N0/nx), i. e. log mean prevalence
of covariate pattern in {D = 0}.

Iterations. The algorithm iterates E- and M-step until
∑

l |θ̂
(t+1)
l − θ̂(t)

l | < ε
with a specified ε.

• E-Step

(a) Current expected counts: µ̂(t) = exp(Xθ̂(t))

(b) Current weights (per stratum and outcome group): µ̂(t)
ijk/µ̂

(t)
ij+

(c) Current completed observations (per stratum and outcome group):
N̂

(t)
ijk = nijk + (Nij − nij)× µ̂

(t)
ijk/µ̂

(t)
ij+.

• M-Step
The M-Step implements Louis (1982) idea for speeding up convergence
of the EM algorithm: the first cycles use one step of the standard
Newton-Raphson algorithm, the remaining steps implement Louis’ mod-
ification. In any case, if the deviance increases after a step, the step
length is halved. The deviance is 2

∑
(N̂ log N̂− µ̂ log µ̂− N̂+ µ̂), where

summation is over i, j, k.
Specifically

Document: \sas-twophase-package\documentation\TPMethods.pdf



Methods and Implementation 8

– For the first 10 iterations, one Newton-Raphson step is performed.
This gives

θ̂(t+1) = θ̂(t) + [XT Diag(µ̂(t))X]−1XT (N̂ (t) − µ̂(t))

– After 9 iterations, Louis’ idea is implemented via

θ̂(t+1) = θ̂(t) + Cov(θ̂(t))XT (N̂ (t) − µ̂(t)).

Here, Cov(θ̂) is the parameter covariance matrix under EM, given
as

Cov(θ̂) = (XT [Diag(µ̂)−D]X)−1,

where D is a block-diagonal matrix built from the 2 × J elements
Dij = (Nij−nij)(Diag(π̂ij)−π̂ijπ̂

T
ij) with π̂T

ij = (µ̂ij1, . . . , µ̂ijKj )/µ̂ij+.

Realization in SAS (em5macro.sas). The data come prepared from the prepa-
ration program prep.sas. The first J observations represent the phase one
data, the remaining nx observations represent the phase two data, sorted by
stratum and covariate pattern. Each of these nx observations has

- the stratum S ∈ {1, . . . , J},

- the value of the regression variables xjk (p columns), forming a covariate
pattern,

- the number of cases (n1jk) and controls (n0jk) with this covariate pat-
tern,

- the number of cases (n1j) and controls (n0j) in the respective stratum
and the number of phase one counts per stratum (N1j and N0j).

In a first preparation step, (Nij − nij) are calculated and a variable Nr,
giving a complete enumeration of the covariate patterns, is created. The
next step ”doubles” the phase 2 data in that separate observations for cases
and controls are built. Furthermore, a second stratification variable S2 is
created which counts the number of cells in the phase one 2× J−table.
The EM algorithm is performed using SAS/IML matrix language.
The following table gives a translation of terms from the above text to IML-
variables:
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Symbol IML name Description

Y Y disease status (0: controls)
N0, N1 N0, N1 number of controls and cases in phase 1
S z Stratum variable (values: 1 - J)
S2 z2 Stratum variable, S2 = 2 ∗ S − 1 + Y ,

(values: 1 - 2S)
xjk vars covariate values (row vector per obser-

vation of dimension p)
Nr enumeration of pattern (values: 1 - nx)

nx nxz number of distinct covariate patterns
m com phase 2 frequency of covariate pattern

n0jk m com*(D=0) among controls
n1jk m com*(D=1) among cases
(Nij − nij) m inc number of observations with missing co-

variates (per S2)

Weights. The weights are implemented via B=Design(z2), which has the dum-
mies of S2 ((i, j)−cell in the phase 1 table.). Applying BB=B*T(B) to the vector
of expected counts µ gives the desired (i, j)-cell sums (µij+).
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